by Arlene Weintraub | 
Oct 31, 2019 10:20am
Eye
Variants in three "complement" genes are closely associated with vision loss in Multiple Sclerosis, Johns Hopkins Medicine researchers discovered. (Pixabay)
The most severe form of Multiple Sclerosis, called progressive MS, causes the death of nerve cells, which often leads to vision loss and other neurological problems. Now, scientists at Johns Hopkins Medicine say they’ve identified gene variants that play a role in MS-related vision loss—a discovery that could help guide precision medicine for treating the disease as well as the development of new therapies, they believe.

The Johns Hopkins team tied vision loss in MS to three “complement system” genes, which make proteins that are normally associated with immune function. Using gene testing, advanced imaging and vision tests on MS patients over seven years, the researchers discovered that variants in the genes, called C1, CR1 and C1QA, were closely associated with vision loss. They published the findings in the journal Brain.

“We believe that our study opens up a new line of investigation targeting complement genes as a potential way to treat disease progression and nerve cell death,” said Peter Calabresi, M.D., professor of neurology and neuroscience and co-director of the Johns Hopkins Precision Medicine Center of Excellence for Multiple Sclerosis, in a statement.

he team started by using optical coherence tomography to examine nerve cells in the retinas of 374 patients with MS. The scans allowed them to measure the thinning of the layer of those cells, which are known as ganglion cells, over time. Then they used blood samples from the patients to look for genetic mutations, pinpointing 23 variants in C3 in patients with the fastest rates of deterioration in ganglion cells.

A separate analysis of 835 patients who provided DNA samples and who underwent vision testing allowed the researchers to fine-tune their findings. They found that people with specific genetic variants in the complement gene C1QA were 71% more likely to lose their ability to detect visual contrasts over time, while those with changes in the CR1 gene faced a 40% risk of the same visual decline.

Several other research groups in MS are studying the role of genes and their variants in the progression and potential treatment of the disease. Early this year, a team at the University of Chicago found that a derivative of the hypertension drug Wytensin selectively inhibits a gene called PPP1R15A, which in turn seems to control inflammation in MS.

Continue


...................................................................................

Stay Informed. Register to receive 
'The MS BEACON' e-Newsletter Click here
.................................................................................................

CLICK Red BOX to SUBSCRIBE to our MS Learning Channel 

How new gene discoveries could guide precision medicine in multiple sclerosis
Click Red Box on banner to opt-in
........................................................................................................
This Article is Provided by:  #MSViewsandNews
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews
How new gene discoveries could guide precision medicine in multiple sclerosis
(Originally posted by Stuart)

Read More

MSChristian.org RSS Statement

Most of the information found on this website comes from RSS Feeds. It is an automated task that provides the information to you. We try to limit items that are duplicates, but with many feeds this can be difficult. Since the owner of this website also has MS and is legally blind this service was necessary to keep the website running with as much automation as possible. Volunteers help from time to time but many have disabilities themselves. We thank you for visiting us and hope that MSC can be of service to you and your loved ones.