By accepting you will be accessing a service provided by a third-party external to https://mschristian.org/

A 3D view of The Amazing Brain: Shining a Spotlight on Individual Neurons

A 3D view of  The Amazing Brain: Shining a Spotlight on Individual Neurons
A major aim of the NIH-led Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative is to develop new technologies that allow us to look at the brain in many different ways on many different scales. So, I’m especially pleased to highlight this winner of the initiative’s recent “Show Us Your Brain!” contest.
Here you get a close-up look at pyramidal neurons located in the hippocampus, a region of the mammalian brain involved in memory. While this tiny sample of mouse brain is densely packed with many pyramidal neurons, researchers used new ExLLSM technology to zero in on just three. This super-resolution, 3D view reveals the intricacies of each cell’s structure and branching patterns.



The group that created this award-winning visual includes the labs of X. William Yang at the University of California, Los Angeles, and Kwanghun Chung at the Massachusetts Institute of Technology, Cambridge. Chung’s team also produced another quite different “Show Us Your Brain!” winner, a colorful video featuring hundreds of neural cells and connections in a part of the brain essential to movement.
Pyramidal neurons in the hippocampus come in many different varieties. Some important differences in their functional roles may be related to differences in their physical shapes, in ways that aren’t yet well understood. So, BRAIN-supported researchers are now applying a variety of new tools and approaches in a more detailed effort to identify and characterize these neurons and their subtypes.
The video featured here took advantage of Chung’s new method for preserving brain tissue samples [1]. Another secret to its powerful imagery was a novel suite of mouse models developed in the Yang lab. With some sophisticated genetics, these models make it possible to label, at random, just 1 to 5 percent of a given neuronal cell type, illuminating their full morphology in the brain [2]. The result was this unprecedented view of three pyramidal neurons in exquisite 3D detail.
Ultimately, the goal of these and other BRAIN Initiative researchers is to produce a dynamic picture of the brain that, for the first time, shows how individual cells and complex neural circuits interact in both time and space. I look forward to their continued progress, which promises to revolutionize our understanding of how the human brain functions in both health and disease.
See original article


...................................................................................

Stay Informed. Register to receive 
'The MS BEACON' e-Newsletter, Click here

society

Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews
society
Original author: Stuart
Researchers find possible causes for lacking of ef...
Dark Rimmed Brain Lesions May Be Signal of Aggress...
 

Comments

No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Guest
Wednesday, 27 May 2020

Captcha Image

MSChristian.org RSS Statement

Most of the information found on this website comes from RSS Feeds. It is an automated task that provides the information to you. We try to limit items that are duplicates, but with many feeds this can be difficult. Since the owner of this website also has MS and is legally blind this service was necessary to keep the website running with as much automation as possible. Volunteers help from time to time but many have disabilities themselves. We thank you for visiting us and hope that MSC can be of service to you and your loved ones.